Anomaly detection in performance regression testing by transaction profile estimation
نویسندگان
چکیده
As part of the process to test a new release of an application, the performance testing team need to confirm that the existing functionalities do not perform worse than those in the previous release, a problem known as performance regression anomaly. Most existing approaches to analyse performance regression testing data vary according to the applied workload, which usually leads to the need for an extra performance testing run. To ease such lengthy tasks, we propose a new workload-independent, automated technique to detect anomalies in performance regression testing data using the concept known as transaction profile (TP). The TP is inferred from the performance regression testing data along with the queueing network model of the testing system. Based on a case study conducted against two web applications, one open source and one industrial, we have been able to automatically generate the ‘TP run report’ and verify that it can be used to uncover performance regression anomalies caused by software updates. In particular, the report helped us to isolate the real anomaly issues from those caused by workload changes with an average F1 measure of 85% for the open source application and 90% for the industrial application. Such results support our proposal to use the TP as a more efficient technique in identifying performance regression anomalies than the state of the art industry and research techniques. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
A hybrid approach for database intrusion detection at transaction and inter-transaction levels
Nowadays, information plays an important role in organizations. Sensitive information is often stored in databases. Traditional mechanisms such as encryption, access control, and authentication cannot provide a high level of confidence. Therefore, the existence of Intrusion Detection Systems in databases is necessary. In this paper, we propose an intrusion detection system for detecting attacks...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملMoving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کامل"The Tail Wags the Dog": A Study of Anomaly Detection in Commercial Application Performance
The IT industry needs systems management models that leverage available application information to detect quality of service, scalability and health of service. Ideally this technique would be common for varying application types with different n-tier architectures under normal production conditions of varying load, user session traffic, transaction type, transaction mix, and hosting environmen...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Softw. Test., Verif. Reliab.
دوره 26 شماره
صفحات -
تاریخ انتشار 2016